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Density-functional theory of hard-sphere condensation under gravity
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The onset of condensation of hard spheres in a gravitational field is studied using density-functional theory
(DFT). We find that the local density approximation yields results identical to those obtained previously using
the kinetic theory[Physica A271, 192,(1999], and a weighted density-functional theory gives qualitatively
similar results, namely, that the temperature at which condensation begins at the bottom scales linearly with the
weight, diameter, and number of layers of particles. We find also that the different DFT approaches give
quantitatively different results for the density profiles at low temperatures. In particular, the weighted density-
functional approach reveals the layering of hard spheres in the solid regime.
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I. INTRODUCTION rium state is then the configuration that minimizes the free

energy. Indeed, factorization and integration over velocity

In a recent paper, one of the auth@@sC.H) [1] proposed are in general fundamental results of equilibrium density-
that hard spheres in the presence of a gravitational field function theory(DFT), so we find it necessary to obtain the
undergo a condensation transition, and identified the transiesults of Ref[1] by DFT methods. We will first employ the

tion temperaturd. as a function of external parameters, i.e., simplest form of the density-functional theory known as the
local density approximatiofLDA), which assumes that the

Te=mgDudc/ uo, (1) range of interparticle interaction is much smaller than the

i ) typical length scale over which(r) varies[4]. We will show
wherem andD are, respectively, the mass and diameter Of 4t the | DA and the Enskog theories are in fact identical, so

EPS c;]arddsphereds; is the dimensior;lless If?yer ;hicknqsslatthat in both methods the condensation temperature is defined
=0, anduo and ¢ are constants that reflect the particular , 4, temperature at which a particular sum rule, to be dis-

manner in which a system packs upon condensiNgte that cussed below, breaks down. Next, we will analyze the prob-

we have set Boltzmann’s constat=1 in the above equa- : : . ; L
) ) . lem with a simple weighted density approximatiOvWDA)
tion and throughout the rest of this worlt was argued in [4—7], which takes into account the local variation of the

Ref. [1] that there exists a critical temperatuFg at which nsity function. In thi roximation. micr i infor-
the density at the bottom layer becomes the c:lose—packe(é]e Sity function. In this approximation, microscopic into
mation is preserved in the density profile; notably the forma-

density. In the theory developed there, thiswas identified £ g h i the densi il
as the temperature below which the derived density profileOn Of layered structure shows up In the density profile as
could no longer conserve particle number. It was further aroscillations. The peak-to-peak distance of this oscillation is

gued that since the hard spheres cannot be compressed fProximately the particle diameter. We define in this ap-
definitely, if the temperature is lowered beldly, then the ~Proximation the condensation temperature to be that tem-
first layer should remain at the close-packed state, while thBerature at which the local volume density at the bottom of
particles at the second layer try to compact themselves arfie sample, averaged over a layer which is one particle di-
thus crystallize. The crystallization then proceeds upward@meter thick, reaches the simple culiic three dimensions
from the bottom layer as the temperature is lowered. Thi®r simple squarén two dimensionsclose-packed value. We
picture was later confirmed by molecular dynamics simula-admit that this definition is somewhat arbitrary, but find that
tions[2] for monodisperse hard spheres and was extended b satisfies our intuitive sense of the meaning of the onset of
the segregation of binary mixtures of hard spheres of differcondensation: condensation begins when the density at the
ent mass and diamet€lr3]. bottom of the sample becomes large. We will demonstrate
In the original work[1], the Enskog kinetic equation was that the results of both analyses present a picture identical to
used to obtain the density profile of hard Spheres under grathose presented in Rd:f_‘]_]’ in particu|ar’ we will show how

ity. Howeve_r, in_ an attempt to s_olve a highly nonlinear inte-_the valueu, that appears in Eq1) depends on the approxi-
grodifferential kinetic equation, it was assumed that the equipation.

librium velocity distribution functionf(r,v), factorizes into

a product of space and velocity dependent parts,fi(e,v)
=G(r) ¢(v) and further that the functional form ef(v) is
Gaussian, which should be valid for elastic hard spheres. The
factorization assumption is an equilibrium ansatz, which The essence of the LDA is to assume that the system may
states that the configurational statistics are separated obe divided into small pieces of nearly constant density and
from the kinetics when the system is at equilibrium, so thathen to treat each piece as though it were part of a homoge-
all the equilibrium quantities can be obtained from the con-neous systerfd]. Under these assumptions one may write a
figurational integral of the partition function. The equilib- free energy functional

II. LOCAL DENSITY APPROXIMATION
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where we have introduced a Lagrange multipherThe so-

FLDA[p]:j dfp(r)lﬁ(P(f))Jrf drp(r)Uex(r), (2)  |utions of the Euler-Lagrange equation are necessarily con-
strained by Eq(3), which, if we integrate out the transverse

where (p(r)) is the Helmholtz free energy per particle in directions, takes the form

the absence of an external field abld,; is the potential

energy per particle due to an external field, such as, gravity. N/A= fdep(z).

Minimization of this functional under the global constraint 0

that the number of particles is given by

If we define a nondimensional density=pDY, then we may

make the further definitionp.u=N/(A/(D9" ), where u

then has the meaning of the number of layers in the sample if

its particles were close packed at densi#ty. Thusu mea-

should yield the desired density profile. To be more specificsures the nondimensional “depth” of the sample. Conse-

we define variables for hard spheres of massonfined in a  quently, the constraint satisfied Ipyz) is

d-dimensional volumeV=L%"1H with L9 ! being the

N=fvdrp<r> &)

cross-sectional area of a{ 1)-dimensional plane anHi _pd-1 °°d
being the height of the container along which the gravita- Hbe= 0 2p(2).
tional field is acting. The Helmholtz free energy per particle
consists of two terms, Further definingg=2z/D, we see thak should be determined
by the sum rule
(p)=thia(p) + Yexd ), (4)
* &
where ;4 is the ideal gas contribution M¢c:f d§¢(§)=f °d¢g(¢), 9
0 0
Yia(p)=T(IN[A%]-1). 5

where ¢ is the density at the bottom of the sampl&he
Note thaty;q= — T In(ZYN!) with the single particle partition second equality in Eq9) was used in Refl1] to determine
functionz=V(27mmT)%2 [8] and that we have redefined the a constant of integration that arose from integrating &8)
thermal wavelength\ =(27mT) Y2 Next, e, is the ex-  below, which was derived in the Enskog theory treatment of
cess contribution to the free energy due to the configurationahe problem. This had the effect of associating, for giwgn
integral coming from the interactions among particles and i), D, and T, a unique value ofp, to a given value ofu.]
written for the homogeneous liquid as the integral Note that the particular shape of the density profile will de-
pend on the functional form of the pressuPeor, equiva-
" =Tfp i 1 E lently, on the functional form of the excess free eneggy..
exc olp'T One may use the Enskog pressure for hard disks or a hard
sphere equation of state given by a functional form
The above equation can be derived from the thermodynamic p
relation, P=—(9F/dV); with the chain rule: ¢/dV)+ P=pT[1+ypDx(p)], (10
=(p?IN)(d/9p)+. Note thatP/pT—1 is the virial sum. To
simplify the problem, we make the assumption thataries
only in the directionz parallel to the gravitational field an
then integrate out the transverse degrees of freedom to yie
the free energy per unit area functional, ,

p dp
_ Yexdp)= | vp'Dx(p')—-. (11)
FLD':[p]EF[p] fo p

— )

p

wherex(p) is the pair correlation function evaluated at con-
g tact (r=D), and wherey=#/2 whend=2 and y=2=/3
jhend=3. Then

Substituting this form ofi.,. into Eq. (8) and taking the

_ oodz 2 7 +fwdz 2 der_ivative with respect ta generates, in our nondimensional
fo P(2)ia(p(2)) 0 P(2)Yexdp) variables, the differential equation

+mgf:d2p(2)2, (7) d¢+m_gD¢:_,y¢ (12)

dz T

dyx do¢
!

whereA=L9"1 is the cross sectional area in the transversavhich is precisely the result obtained in REf]. Thus the
plane. Minimization of the functional under the constraintequivalence between the LDA and Enskog theory has been
Eq. (3) yields the Euler-Lagrange equation for the problem shown, and the constapt, that appears in Eq1) can also
5E[ | du be derived by the density-functional theory in the local den-
pl d exc sity approximation.
op =TINA (D) ]+ Yexdp) +p dp Fmgz=, To conclude this section we discuss the general method
(8) by which we calculateT,. in the LDA/Enskog theory(A
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presentation of results particular to our choices of equation L5
of state to examine this problem may be found in the Appen-

dix.) First, note on physical grounds that for the liquid phase,

the density profilepp({) in Eq. (9) ought to be a monotoni- 1
cally decreasing function of the heiglitwith its maximum

value at the bottom(Indeed, this is what we have found to n
be the case when we made calculations using particular

forms of the equation of stajefurther, the maximum den- 05
sity ¢, (the density az=0) is a function of temperature,

too, with the upper bounady=< ¢.. Again, this must be true

on physical grounds. So, the integral in Ef) can be writ- 0, 1o 20 20 2

ten asf(¢q)/B, where B=mgD/T. The particular form of 4

the functionf(¢g) naturally depends on the approximation.

We have found that in both two and three dimensions using FIG. 1. Solid line is the volume density as a function of the
particular equations of staté(¢,) is a monotonically in- dimensionless heighf=z/D at T>T, calculated from numerical
creasing function of¢,. Hence, the maximum physically solution of Eq.(18) for a given set ofn, g, D, and .. The dashed
meaningful value the functiofi(¢) may assume is ai, line is the LDA/Enskog profile for the same system at the same
= ¢., the value of the close-packed density. Thus, we writdemperature.

fmax=f(&c). SinceB or equivalentlyT and the layer thick-

bit trol ters, th le,(=x.
nessy are arbiliary contol parameters, the sum e, @R g1~ | drp(r)dig(p(r)+ [ drp(n)erd put)]
=T..

pe=TFmaxTc/mgD=puoT./mgD, (13 +f drp(r)Uexdr), (14

where we have defineth, = u,. It is in this way that the Where ¥e,d pu(r)] is now a functional ofp(r), depending
LDA/Enskog theory identifies condensation, i.e., the density®™ #(1) through the weighted average of the density given
at the bottom reaching som. , with a failure of a sum rule. by

At this juncture, we find it appropriate to mention the
point made by Levin{9], and in fact widely known to re- pw(r):J dr'w(|r=r'"|)p(r"), (15)
searchers pursuing non-LDA DFT for some time, that reli-
able information about the fluid-solid coexistence cannot b "y ; g
obtai_ned by the LI_DA, bgcause of its inability to include the?ivohr?rlivgl(lgwir:g'Zr:r:;oi%aﬁ?&;azer:ségggsen weighting func
density variations in a highly structured phdselid). When
the Enskog approximation breaks down, one has to either 3
abandon the approximation and search for a better one, or pu(r)= —J dr'@(D—|r—r"|)p(r’), (16)
modify the approximation by removing the unphysical re- 47D?

sults. In the original papdd], the latter approach was taken; ) ) o
namely, based on physical grounds, the condensed regin’f@ere@ is the unit step function, i.e., we replace the local

was represented by a constant average density, a Fermi re€€nsityp(r) with its average over a sphere of radius equal to
angle. Then the remaining liquid regime, the tail of the denthe particle diameteb. Because we assume planar symme-
sity profile, was described by the Enskog profile, which wad'y, i-€., independence in the andy directions, we may
linked to the Fermi rectangle at the liquid-solid interface.intégrate out the transverse degrees of freedom and write
While the proportionality constant, in Eq. (1) obtained this explicitly the integral above as a one-dimensional integral,
way seems to overestimate, and thus while the Enskog equa-
tion fails to locate the precise point of the liquid-solid tran-
sition, the prediction of its existence and the scaling relation
between the critical temperatulle and external parameters
[Eqg. (1)] seem to remain true. We discuss below a more 2
elaborate approximation that does take into account local

variations in the structured phase that yield substantially

lower values foru, (see Fig. 2, which are somewhat close 1
to the values obtained by a mean field thef®)3].

3

IIl. WEIGHTED DENSITY APPROXIMATION 0 1b 20
The essence of the WDA, as introduced by Tarazdri ¢
and Curtin and Ashcroft6] is to recast Eq(2), the general FIG. 2. Asin Fig. 1 but withT~T, . Note that the vertical range
form of the free energy functional, as of the graph clips the lowest density peak.
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3

pw(2)= aD°

fde'P(Z’)[DZ—(Z—Z’)2]®(D—IZ—Z’l),
0
17

wherez=0 corresponds to the position of the center of the
particle when its edge is in contact with the bottom wall at
z=-D/2.

As before, we need to extremize the free energy func-
tional under the global constraint on particle number, so we
again use the method of Lagrange multipliers and functional
differentiation. Performing the minimization of the free en-
ergy functional[Eq. (7) with p in the excess term replaced
by p,, given in Eq.(17)], we find the following equation

PHYSICAL REVIEW B4 061105

20

FIG. 3. As in Fig. 1 but withT<T, . Note that the vertical range

must hold: of the graph clips the lowest two density peaks.

” Othexdpu(Z’
TIn(Asp)—’_‘//exc(Pw(Z))‘f' fo dZ’p(z’)M

5 results reflect this by exhibiting oscillations in the density
p(2) profile nearz=0. With sufficiently low temperature, the

+mgzA=0. (18) bottom-mos_t pe_aks in the local density profile grow Iarge and
narrow, indicating a greater degree of localization in the
We write explicitly the integral term in the equation above dense bottom layers and a tendency toward condensation.
However, because our method by itself does not provide a
© Sthexdpw(Z')) * natural and unambiguous way to decide at what point con-
fo dZ’P(Z')W: . dz'p(z')A(Z") densation occurs, we are forced to define, with due caution,
the critical temperature as the temperature at which the local
XB(z,z2')T, (199  volume densityn at the bottom of the sample, averaged over
a layer that is one particle diameter thi¢ke., from z=
diferdpu(z')) —DJ/2 toz=D/2), reaches the simple cubiin three dimen-
A(Z)=—FF—, (20 siong or simple squargin two dimensions close-packed
dpw(z') value. Figs. 1-3 summarize the development of these density
, 5 o , peaks for a representative system frar-T, through T
B(z,z')=[D*~(z-2")*]0(D—|z-2']), (21) <T,. and also show the LDA/Enskog results for the same
system at the same temperatures. Figure 1 i fefl; Fig.
3 2 is for T=T,; Fig. 3 is forT<T,.. Note that the peak-to-

r= R (22

peak distance of the density oscillations is slightly greater

than the diameter of the hard sphere. Note further that our

The integral equation fos(z), Eq. (18), is highly nonlin-  definition of T, above corresponds qualitatively to another
ear and complex and, therefore, requires numerical solutionNtuitively satisfying interpretation of the onset of condensa-
We choose to solve Eq18) using the Carnahan-Starling tion: atT., the bottom-most density peak is just becoming

equation of state, EqA2) (see the Appendijx so that “deltalike,” i.e., this peak and the adjacent one are separated
by a region of nearly zero density, while all subsequent
2 peaks are separated by a density substantially greater than
A(Z")=— - : zero(see Fig. 2 In contrast, well abov@ . the bottom-most
pw(Z')| 1- %D3pw(z’) layer is not so clearly definetbee Fig. 1, and well below

2

T., indeed more than one layer is clearly defined according
to this criterion(see Fig. 3. We have found this qualitative

+ _ - (23 correspondence between the integral of the lowest density

spike and its approximate degree of localization to hold in

a
pu(Z') 1_§D3PW(Z,) both three and two dimensions and independently of the
) ' depth of the system. We have, however, not quantified the

For a given choice ok we iterate Eq(18) until the iteration  relationship, and present this remark simply to point out the
converges to a unique profile. The integral of the prdflg.  intuitive reasonableness of our definitionTqf. Finally, note
(9)] determinesu, so for fixedm, g, D, and T, we tunex  that asT decreases, the WDA and LDA/Enskog density pro-
until the integral of the profile yields the desired number offiles tend to disagree with increasing significance even in the
layersu. We find that at high temperatures, the profiles ob-nonoscillatory tails of the profiletsee Fig. 2 and especially

tained using the WDA match very well the profiles obtainedFig. 3).

for the same set of parameters using the LDA/Enskog ap- In Fig. 4, for several different sets of, g, D, we have
proach. But as we lower the temperature of the system, paplotted the dimensionless critical temperatute=T./mgD
ticles at the bottom begin to form dense layers, and the WDAas a function of the initial layer thicknesg, The relation-
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FIG. 5. Valueuy=f(¢) as a function of density at the bottom
of the samplep, as calculated in the LDA/Enskog theory. The solid
curve is for 2D using the Ree and Hoover value¢®), Eq. (A3).

The remaining curves are for 3D: dotted, Percus-Yevick compress-
ibility form, Eq. (A7); dashed, Carnahan-Starling, E&4); long
dashed, Percus-Yevick virial form, EGA9). The arrows on the 2D
curve indicate the range g, calculated with the LDA/Enskog
heory from molecular dynamics simulation valuesdgf

FIG. 4. Dimensionless condensation temperature,
=T./mgD, is plotted against the dimensionless layer thickness
The slope is Jy. The upper line is for systems with=2, and the
lower line is for systems witll= 3. Different symbols along each
line correspond to different sets of, g, andD.

ship turns out to be linear, as predicted in the LDA/Ensko

theory as well, and the numerically determined value from

the slope for the constapt, is ug=7.32 in three dimensions

(3D). We have performed an analogous WDA calculation intheory simply predicts lower condensation temperatures than

2D using the Ree and Hoover correlation functjgnp), Eq.  the WDA theory, all other things being equal. To emphasize

(A1), also for several different sets of g, D. The data from  this difference, we present Fig. 6, which shows for a repre-

this calculation appear in Fig. 2 as well. They vyield sentative system both the LDA/Enskog and WDA profiles at

=4.31in 2D. It is important to note that alternate definitions T (LDA), the temperature at which the LDA/Enskog density

of T, would lead to slightly different results than those in profile takes the cubic packed density at the bottofp (

Fig. 2, but we believe that at the level of the approximations=1). The dots in Fig. 6 represent the average density of each

made in this work so far, our results are informative. Bothlocal maximum, measured between the nearest minima. The

the 2D and 3D WDA results are smaller than those obtaineghree bottom-most peaks have mean density in excess of the

by the LDA/Enskog approach, and we address this nextcubic close-packed value, and are highly localized. Clearly,
As we have discussed, in the LDA/Enskog approach, thé@t this temperature, the WDA indicates the formation of at

value of u depends onrp,, the density at the bottom, and is least three dense layers, while the LDA/Enskog theory pre-

identical to the functiorf (). In all the approximations we dicts onset of condensation.

have used in this workf(¢,) [see Eqs(A3), (A4), (A7), Finally, we turn our attention to the question of whether

and (A9)] is a function very sensitive te, for ¢, near the condensation phenomenon we are considering is a phase

close-packed values, i.e., f@,=1. Figure 5 illustrates this transition in the thermodynamic sense, i.e., whether conden-

sensitive dependence. Molecular dynamics simulations igation corresponds to a discontinuity in the first or higher

two dimensions[10] have shown thatp, at T<T. varies derivatives of the free energy with respect to temperature.

widely. For one set of simulations using®18ard disks with

un=20, defects in packing lead t¢, occupying the range 2

1.00< ¢pg<<1.14, with higher densities occurring at lower

temperatures(Note that for square packing in 2%,=1,

while for triangular packing,¢0=2/\/§~1.155) In LDA/

Enskog theory, this range @b, leads to 21.76 1(<90.33

(the arrows in Fig. 5 indicate this rangéhe large range due mj

to the sensitivity off (¢g), while the WDA theory presented

here gives a smaller valug,,=4.31 for the 2D calculation

using the same equation of state. In the 3D LDA/Enskog

calculation using the Carnahan-Starling equation of state,

one expects 15.299u,<152.34 (the lower bound for 0

simple cubic and the upper bound for hexagonal close pack-

ing), while the WDA yieldsu,=7.32. We see that even the

lowest possible values that, may take in the LDA/Enskog  FiG. 6. WDA (solid line) and LDA/Enskog(dashed ling pro-
approach, namely, those for cubic or square packih@ files for a representative systemTt (LDA). The dots are average
limit in which comparison to the WDA is most apt, given our values of the WDA density peaks. At this temperature, the LDA/
definition of T in that theory, are indeed greater than those Enskog theory indicates onset of condensation, while the WDA
calculated in the WDA theory. Evidently, the LDA/Enskog theory indicates the formation of at least three dense layers.

20
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We address this question by focusing on the gravitational

potential energy contribution to the free energy,

=mgf,zp(z)dz, which is proportional to the center of mass

(2)=[szp(2)dz [;p(z)dz. First we show that in the LDA/

Enskog theory, which is extended to temperatures bdlpw
by the assumption that the density in the frozen layers is
given by ¢= ¢ and that the density above the frozen layers

is given by a vertically shifted LDA/Enskog profilel], a
kink in the center of mass develops®t T, suggesting a
first order transition.

To do this we note that integration of E{.2), taken with
our previous definitions, shows that the density profilg)
is given by the functional form

BL=1(¢)— (o), (29)

where ¢, is the density at =0 andB=mgD/T. AboveT,,

NG
<§(T)>=w—EE|1/lz, (25)
fdidb(é)
0
where
= [7 1)~ (o016 35 do
NG de
0 df
IZZLSO(T)QS%M'
Now, we note that fofl nearT,
do(T)= = a(T-To), (26)

wherea>0. Then for any integran@(¢) we can make the
following approximation:

0 0
f G(¢)d¢~f G(¢)dd—a(T—T)G(e).
¢o(T) b 27

Applying this to the above expression to the intedrabnd
I,, we find that £(T)) is linear inT with a quadratic correc-
tion.

Below T, the density profile develops a kink &t&L.
For (<L, ¢({)= ¢, the close-packed density, and fér
>L, the profile is given by the LDA/Enskog profile E@4),
and the thickness of the frozen layer is given[ty

L=pu(1-T/T,). (29)

We now compute the center of ma&yT))

PHYSICAL REVIEW B4 061105

fowmmdz J:gqbcdgf:"m(g_L)M

(L(M))y=—
| o0 poe
0
_ pel?2+1
B mpe (29
where
|=Jx§¢(§)d§+LF(b(é)%E'ﬁle
0 0
lo=dc(u—L). (30)
Hence,
l=¢ 2—(1—1 +J
TN TS
where
fgcﬁ(g dg= f Up) o "9((25)d<1>EA/BZO<T2
and where
A=f [f(he)— (D) p——— d((;b) ®.
It, therefore, follows that
(@T)=5+\T?, (31

where

A=

ool (52
p\mgD) V¢ 2/
The center of mass scales with temperature quadratically be-
low T, but linearly just abovd . ; thus, there is a kink in the
center of mass and in the gravitational potential energy con-
tribution to the free energy, giving rise to a first order tran-
sition. The existence of kink in the potential energy at the
transition pointT, is in line with the recent rigorous result
for one-dimensional hard rod41].

The scaling of ¢) with T2 below T, survives a modifica-
tion of how we represent the frozen region. Suppose, the
density in the frozen region is not represented by a uniform
¢ but is instead given by

¢<§>=2 pis(L— &), (32)

where(; is the position of the center of hard spheres and
is its peak density in theth row forming a crystal. This is a
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50 , , ' requires us to note that our WDA for this problem did not
include any sophisticated attempt to represent the crystal-
40 ¢ fluid interface, something other researchdrd—14 working
on similar problems have done. Doing so should likely give
&30 I a more accurate quantitative picture than that presented here.
v
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% 10 20 30 40
T/mgD APPENDIX
FIG. 7. WDA calculation of center of magg) vs T/mgD for a This appendix contains detailed results from the LDA/
system withu = 10. The arrow indicate®, and points to what may Enskog theory. The particular form of the functidQe,),
be a kink in the function. introduced in the local density approximation section, de-

pends on the equation of state chosen to describe the system.
crude way to approximate the oscillations in the density proReferencd 1] [Eq. (150 and Eq.(160)] gives the functional
file due to the crystallization. Thet, in Eq.(30) is replaced  forms of ¢, in 2D using the Ree and Hoover correlation
by function[15];

L
= fo (HDAL=2 Gipy. (33 X()= (1_“1¢+“§¢2), (A1)
i (1—61’(,25)
If p;= ¢, for all i, then, 0.489 35%7/2
a=V. 3

l= ¢02i Li= d[ 12+ 312+ 5/2+ - - - +(2L—1)/2] o= 0.196 703112,
= pL?I2, (34) a,=0.006519r%/4,

which is the same result as that obtained by assuming the . . . . .
density profile is approximated by a Fermi rectangle. and in 3D using the Carnahan-Starling equation of state

The WDA approach to the problem also yields results that
o ' g P _(tgto—n)

may be suggestive of the existence of a first order phase (A2)
transition. We allow that our method is approximate and that pT (1—7)°

our definition of T, is open to question, and so a more care-

ful study of the transition in the WDA must be made in The 2D Ree and Hoover form df ¢,) is given by
future. But it is nonetheless suggestive to examine the depen-

dence of the center of magg(T)) on T. Figure 7 shows C3do

results for a representativs syst(>am in 3D wijth=10 and f(do)rn=(1+C2) hot 501¢§+m

whose critical temperature was found to be on the range

1.4mgD<T.<1.5mgD. An elbow, possibly a kink, is ap- Cy 1 Cahg

parent in the vicinity ofT ., marking the onset of near linear - Z(W - 1) + m (A3)

behavior forT>T,. We do not assert that this is evidence of
a phase transition; we display this data merely to suggest that. _ 2. __ 2 3
the existence of such a phase transition in the WDA ap?ilTOC;lggjia_ czo'gr?gi’sz(w/z()?ﬁ)y(—ai/o/[ﬁfg;;z%
proach is not inconsistent with our data. A different form of _ ., - ' ' 4 ) k 1 Lo
the weight function in Eq(15) might yield a better result b 1.278. The 3D Carnahan-Starling form i) is given
regarding the nature of the phase transition. y

2 2
IV. CONCLUSIONS F( o) cs= dho— (1_(2‘;0) +(1_Z); = (A4)
0

We have shown that the conclusion of the original paper
[1], namely, that the scaling of the critical temperature atwhere in this expressioa = 7/6.
which hard spheres under gravity begin to form a solid is While the scaling of the critical temperature displayed in
linear with their weight, their diameter, and the depth of theEq. (1) is independent of the particular equation of state used
sample, necessarily follows from the simplest density-in the calculation, the maximum value 6€¢,), which we
functional theory for the problertthe LDA) and survives a have defined above ag), depends on the functional form of
richer density-functional treatment using a WDA. Prudencethe density profile, or equivalently, the pressure. Using the
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two approximations above, and taking the maximum densiThe slightly different form, namely, the virial form
ties asz.= m/6y2~0.74 in 3D andy.=7/(2y/3)~0.91 in ,
2D, we find P 1+29+3p

T _\2
forn=111.31 (2D) P (1=n)
yields
At the level of the Enskog approximatiop,, is quite sensi- f(ho)pyv=3¢o—8 %o +6 %o 5
tive to the density at the bottong. (1=ado) (1-ady)
In order to show the dependenceof on approximation,
MoPYVv— 86.63. (Ag)

we also compute in it 3D by the Percus-Yevick compress-

ibility form of the equation of state, We further point out that the breakdown of the sum rule is
due to the fact that the pressure has a singularity=atl,
—=1 7 (AB) and thus it has &inite value at the close-packed densiy,
pT  (1-9)° which is necessarily less than of@. If one uses the lattice
gas pressurgle],

P 1+ 9+ 172

which yields equally high values fqi,,
®o bo ®o

P=—TIn(1—p), (A10)

f(do)pyc= -3 +3 ) which has a singularity gi=1, then the condensation tem-
(1=ado) (1-agpg)? (1-adpy)® perature is zero, and the density profile is given by the Fermi
function[17]
Mopyc=185.19. p(z)=11+exdmog(z— w)/T]}. (Al
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