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Density-functional theory of hard-sphere condensation under gravity

Joseph A. Both and Daniel C. Hong
Department of Physics, Lewis Laboratory, Lehigh University, Bethlehem, Pennsylvania 18015

~Received 1 March 2001; published 20 November 2001!

The onset of condensation of hard spheres in a gravitational field is studied using density-functional theory
~DFT!. We find that the local density approximation yields results identical to those obtained previously using
the kinetic theory@Physica A271, 192, ~1999!#, and a weighted density-functional theory gives qualitatively
similar results, namely, that the temperature at which condensation begins at the bottom scales linearly with the
weight, diameter, and number of layers of particles. We find also that the different DFT approaches give
quantitatively different results for the density profiles at low temperatures. In particular, the weighted density-
functional approach reveals the layering of hard spheres in the solid regime.

DOI: 10.1103/PhysRevE.64.061105 PACS number~s!: 05.20.2y, 51.30.1i, 45.70.2n, 83.80.Fg
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I. INTRODUCTION

In a recent paper, one of the authors~D.C.H! @1# proposed
that hard spheres in the presence of a gravitational fieg
undergo a condensation transition, and identified the tra
tion temperatureTc as a function of external parameters, i.

Tc5mgDmfc /m0 , ~1!

wherem and D are, respectively, the mass and diameter
the hard spheres,m is the dimensionless layer thickness
T50, andm0 andfc are constants that reflect the particu
manner in which a system packs upon condensing.~Note that
we have set Boltzmann’s constantk51 in the above equa
tion and throughout the rest of this work.! It was argued in
Ref. @1# that there exists a critical temperatureTc at which
the density at the bottom layer becomes the close-pac
density. In the theory developed there, thisTc was identified
as the temperature below which the derived density profi
could no longer conserve particle number. It was further
gued that since the hard spheres cannot be compresse
definitely, if the temperature is lowered belowTc , then the
first layer should remain at the close-packed state, while
particles at the second layer try to compact themselves
thus crystallize. The crystallization then proceeds upw
from the bottom layer as the temperature is lowered. T
picture was later confirmed by molecular dynamics simu
tions @2# for monodisperse hard spheres and was extende
the segregation of binary mixtures of hard spheres of dif
ent mass and diameters@3#.

In the original work@1#, the Enskog kinetic equation wa
used to obtain the density profile of hard spheres under g
ity. However, in an attempt to solve a highly nonlinear in
grodifferential kinetic equation, it was assumed that the eq
librium velocity distribution function,f (r ,v), factorizes into
a product of space and velocity dependent parts, i.e.,f (r ,v)
5G(r )f(v) and further that the functional form off(v) is
Gaussian, which should be valid for elastic hard spheres.
factorization assumption is an equilibrium ansatz, wh
states that the configurational statistics are separated
from the kinetics when the system is at equilibrium, so t
all the equilibrium quantities can be obtained from the co
figurational integral of the partition function. The equilib
1063-651X/2001/64~6!/061105~8!/$20.00 64 0611
i-
,

f
t

ed

s
r-
in-

e
nd
d
is
-
to

r-

v-
-
i-

he
h
ut
t
-

rium state is then the configuration that minimizes the f
energy. Indeed, factorization and integration over veloc
are in general fundamental results of equilibrium dens
function theory~DFT!, so we find it necessary to obtain th
results of Ref.@1# by DFT methods. We will first employ the
simplest form of the density-functional theory known as t
local density approximation~LDA !, which assumes that th
range of interparticle interaction is much smaller than
typical length scale over whichr(r ) varies@4#. We will show
that the LDA and the Enskog theories are in fact identical,
that in both methods the condensation temperature is defi
as the temperature at which a particular sum rule, to be
cussed below, breaks down. Next, we will analyze the pr
lem with a simple weighted density approximation~WDA!
@4–7#, which takes into account the local variation of th
density function. In this approximation, microscopic info
mation is preserved in the density profile; notably the form
tion of layered structure shows up in the density profile
oscillations. The peak-to-peak distance of this oscillation
approximately the particle diameter. We define in this a
proximation the condensation temperature to be that t
perature at which the local volume density at the bottom
the sample, averaged over a layer which is one particle
ameter thick, reaches the simple cubic~in three dimensions!
or simple square~in two dimensions! close-packed value. We
admit that this definition is somewhat arbitrary, but find th
it satisfies our intuitive sense of the meaning of the onse
condensation: condensation begins when the density at
bottom of the sample becomes large. We will demonstr
that the results of both analyses present a picture identic
those presented in Ref.@1#; in particular, we will show how
the valuem0 that appears in Eq.~1! depends on the approxi
mation.

II. LOCAL DENSITY APPROXIMATION

The essence of the LDA is to assume that the system
be divided into small pieces of nearly constant density a
then to treat each piece as though it were part of a homo
neous system@4#. Under these assumptions one may write
free energy functional
©2001 The American Physical Society05-1
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FLDA@r#5E drr~r !c„r~r !…1E drr~r !Uext~r !, ~2!

wherec„r(r )… is the Helmholtz free energy per particle
the absence of an external field andUext is the potential
energy per particle due to an external field, such as, grav
Minimization of this functional under the global constrai
that the number of particles is given by

N5E
V
drr~r ! ~3!

should yield the desired density profile. To be more spec
we define variables for hard spheres of massm confined in a
d-dimensional volumeV5Ld21H with Ld21 being the
cross-sectional area of a (d21)-dimensional plane andH
being the height of the container along which the grav
tional field is acting. The Helmholtz free energy per partic
consists of two terms,

c~r!5c id~r!1cexc~r!, ~4!

wherec id is the ideal gas contribution

c id~r!5T~ ln@Ldr#21!. ~5!

Note thatc id52T ln(zN/N!) with the single particle partition
function z5V(2pmT)d/2 @8# and that we have redefined th
thermal wavelengthL[(2pmT)21/2. Next, cexc is the ex-
cess contribution to the free energy due to the configuratio
integral coming from the interactions among particles and
written for the homogeneous liquid as the integral

cexc5TE
0

rS P

r8T
21D dr8

r8
. ~6!

The above equation can be derived from the thermodyna
relation, P52(]F/]V)T with the chain rule: (]/]V)T
5(r2/N)(]/]r)T . Note thatP/rT21 is the virial sum. To
simplify the problem, we make the assumption thatr varies
only in the directionz parallel to the gravitational field an
then integrate out the transverse degrees of freedom to y
the free energy per unit area functional,

FLDA@r#

A
[F̄@r#

5E
0

`

dzr~z!c id„r~z!…1E
0

`

dzr~z!cexc~r!

1mgE
0

`

dzr~z!z, ~7!

whereA5Ld21 is the cross sectional area in the transve
plane. Minimization of the functional under the constra
Eq. ~3! yields the Euler-Lagrange equation for the proble

dF̄@r#

dr
5T ln@Ldr~z!#1cexc~r!1r

dcexc

dr
1mgz5l,

~8!
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where we have introduced a Lagrange multiplierl. The so-
lutions of the Euler-Lagrange equation are necessarily c
strained by Eq.~3!, which, if we integrate out the transvers
directions, takes the form

N/A5E
0

`

dzr~z!.

If we define a nondimensional densityf[rDd, then we may
make the further definitionfcm[N/(A/(Dd21), where m
then has the meaning of the number of layers in the samp
its particles were close packed at densityfc . Thusm mea-
sures the nondimensional ‘‘depth’’ of the sample. Con
quently, the constraint satisfied byr(z) is

mfc5Dd21E
0

`

dzr~z!.

Further definingz[z/D, we see thatl should be determined
by the sum rule

mfc5E
0

`

dzf~z!5E
0

f0
dfz~f!, ~9!

wheref0 is the density at the bottom of the sample.@The
second equality in Eq.~9! was used in Ref.@1# to determine
a constant of integration that arose from integrating Eq.~12!
below, which was derived in the Enskog theory treatmen
the problem. This had the effect of associating, for givenm,
g, D, and T, a unique value off0 to a given value ofm.#
Note that the particular shape of the density profile will d
pend on the functional form of the pressureP or, equiva-
lently, on the functional form of the excess free energycexc.
One may use the Enskog pressure for hard disks or a
sphere equation of state given by a functional form

P5rT@11grDdx~r!#, ~10!

wherex(r) is the pair correlation function evaluated at co
tact (r 5D), and whereg5p/2 when d52 and g52p/3
whend53. Then

cexc~r!5E
0

r

gr8Ddx~r8!
dr8

r8
. ~11!

Substituting this form ofcexc into Eq. ~8! and taking the
derivative with respect toz generates, in our nondimension
variables, the differential equation

df

dz
1

mgD

T
f52gfFfdx

dz
12x

df

dz G , ~12!

which is precisely the result obtained in Ref.@1#. Thus the
equivalence between the LDA and Enskog theory has b
shown, and the constantm0 that appears in Eq.~1! can also
be derived by the density-functional theory in the local de
sity approximation.

To conclude this section we discuss the general met
by which we calculateTc in the LDA/Enskog theory.~A
5-2
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DENSITY-FUNCTIONAL THEORY OF HARD-SPHERE . . . PHYSICAL REVIEW E 64 061105
presentation of results particular to our choices of equa
of state to examine this problem may be found in the App
dix.! First, note on physical grounds that for the liquid pha
the density profilef(z) in Eq. ~9! ought to be a monotoni
cally decreasing function of the heightz with its maximum
value at the bottom.~Indeed, this is what we have found t
be the case when we made calculations using partic
forms of the equation of state.! Further, the maximum den
sity f0 ~the density atz50) is a function of temperature
too, with the upper boundf0<fc . Again, this must be true
on physical grounds. So, the integral in Eq.~9! can be writ-
ten asf (f0)/b, whereb5mgD/T. The particular form of
the functionf (f0) naturally depends on the approximatio
We have found that in both two and three dimensions us
particular equations of state,f (f0) is a monotonically in-
creasing function off0. Hence, the maximum physicall
meaningful value the functionf (f) may assume is atf0
5fc , the value of the close-packed density. Thus, we w
f max5 f (fc). Sinceb or equivalentlyT and the layer thick-
nessm are arbitrary control parameters, the sum rule, Eq.~9!,
breaks down whenT<Tc , where

mfc5 f maxTc /mgD[m0Tc /mgD, ~13!

where we have definedf max[m0. It is in this way that the
LDA/Enskog theory identifies condensation, i.e., the den
at the bottom reaching somefc , with a failure of a sum rule.

At this juncture, we find it appropriate to mention th
point made by Levin@9#, and in fact widely known to re-
searchers pursuing non-LDA DFT for some time, that re
able information about the fluid-solid coexistence cannot
obtained by the LDA, because of its inability to include t
density variations in a highly structured phase~solid!. When
the Enskog approximation breaks down, one has to ei
abandon the approximation and search for a better one
modify the approximation by removing the unphysical r
sults. In the original paper@1#, the latter approach was take
namely, based on physical grounds, the condensed re
was represented by a constant average density, a Fermi
angle. Then the remaining liquid regime, the tail of the de
sity profile, was described by the Enskog profile, which w
linked to the Fermi rectangle at the liquid-solid interfac
While the proportionality constantm0 in Eq. ~1! obtained this
way seems to overestimate, and thus while the Enskog e
tion fails to locate the precise point of the liquid-solid tra
sition, the prediction of its existence and the scaling relat
between the critical temperatureTc and external parameter
@Eq. ~1!# seem to remain true. We discuss below a m
elaborate approximation that does take into account lo
variations in the structured phase that yield substanti
lower values form0 ~see Fig. 2!, which are somewhat clos
to the values obtained by a mean field theory@2,3#.

III. WEIGHTED DENSITY APPROXIMATION

The essence of the WDA, as introduced by Tarazona@4,5#
and Curtin and Ashcroft@6# is to recast Eq.~2!, the general
form of the free energy functional, as
06110
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FWDA@r#5E drr~r !c id„r~r !…1E drr~r !cexc@rw~r !#

1E drr~r !Uext~r !, ~14!

wherecexc@rw(r )# is now a functional ofr(r ), depending
on r(r ) through the weighted average of the density giv
by

rw~r !5E dr 8w~ ur2r 8u!r~r 8!, ~15!

wherew(ur2r 8u) is an appropriately chosen weighting fun
tion. Following Tarazona@4#, we choose

rw~r !5
3

4pD3E dr 8Q~D2ur2r 8u!r~r 8!, ~16!

whereQ is the unit step function, i.e., we replace the loc
densityr(r ) with its average over a sphere of radius equa
the particle diameterD. Because we assume planar symm
try, i.e., independence in thex and y directions, we may
integrate out the transverse degrees of freedom and w
explicitly the integral above as a one-dimensional integra

FIG. 1. Solid line is the volume densityh as a function of the
dimensionless heightz5z/D at T.Tc calculated from numerica
solution of Eq.~18! for a given set ofm, g, D, andm. The dashed
line is the LDA/Enskog profile for the same system at the sa
temperature.

FIG. 2. As in Fig. 1 but withT'Tc . Note that the vertical range
of the graph clips the lowest density peak.
5-3
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rw~z!5
3

4D3E0

`

dz8r~z8!@D22~z2z8!2#Q~D2uz2z8u!,

~17!

wherez50 corresponds to the position of the center of t
particle when its edge is in contact with the bottom wall
z52D/2.

As before, we need to extremize the free energy fu
tional under the global constraint on particle number, so
again use the method of Lagrange multipliers and functio
differentiation. Performing the minimization of the free e
ergy functional@Eq. ~7! with r in the excess term replace
by rw given in Eq. ~17!#, we find the following equation
must hold:

T ln~L3r!1cexc„rw~z!…1E
0

`

dz8r~z8!
dcexc„rw~z8!…

dr~z!

1mgz1l50. ~18!

We write explicitly the integral term in the equation abov

E
0

`

dz8r~z8!
dcexc„rw~z8!…

dr~z!
5E

0

`

dz8r~z8!A~z8!

3B~z,z8!G, ~19!

A~z8!5
dcexc„rw~z8!…

drw~z8!
, ~20!

B~z,z8!5@D22~z2z8!2#Q~D2uz2z8u!, ~21!

G5
3

4D3
. ~22!

The integral equation forr(z), Eq. ~18!, is highly nonlin-
ear and complex and, therefore, requires numerical solut
We choose to solve Eq.~18! using the Carnahan-Starlin
equation of state, Eq.~A2! ~see the Appendix!, so that

A~z8!52
2

rw~z8!F12
p

6
D3rw~z8!G

1
2

rw~z8!F12
p

6
D3rw~z8!G3 . ~23!

For a given choice ofl we iterate Eq.~18! until the iteration
converges to a unique profile. The integral of the profile@Eq.
~9!# determinesm, so for fixedm, g, D, and T, we tunel
until the integral of the profile yields the desired number
layersm. We find that at high temperatures, the profiles o
tained using the WDA match very well the profiles obtain
for the same set of parameters using the LDA/Enskog
proach. But as we lower the temperature of the system,
ticles at the bottom begin to form dense layers, and the W
06110
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results reflect this by exhibiting oscillations in the dens
profile near z50. With sufficiently low temperature, the
bottom-most peaks in the local density profile grow large a
narrow, indicating a greater degree of localization in t
dense bottom layers and a tendency toward condensa
However, because our method by itself does not provid
natural and unambiguous way to decide at what point c
densation occurs, we are forced to define, with due caut
the critical temperature as the temperature at which the lo
volume densityh at the bottom of the sample, averaged ov
a layer that is one particle diameter thick~i.e., from z5
2D/2 to z5D/2), reaches the simple cubic~in three dimen-
sions! or simple square~in two dimensions! close-packed
value. Figs. 1–3 summarize the development of these den
peaks for a representative system fromT.Tc through T
,Tc and also show the LDA/Enskog results for the sa
system at the same temperatures. Figure 1 is forT.Tc ; Fig.
2 is for T'Tc ; Fig. 3 is for T,Tc . Note that the peak-to-
peak distance of the density oscillations is slightly grea
than the diameter of the hard sphere. Note further that
definition of Tc above corresponds qualitatively to anoth
intuitively satisfying interpretation of the onset of condens
tion: at Tc , the bottom-most density peak is just becomi
‘‘deltalike,’’ i.e., this peak and the adjacent one are separa
by a region of nearly zero density, while all subseque
peaks are separated by a density substantially greater
zero~see Fig. 2!. In contrast, well aboveTc the bottom-most
layer is not so clearly defined~see Fig. 1!, and well below
Tc , indeed more than one layer is clearly defined accord
to this criterion~see Fig. 3!. We have found this qualitative
correspondence between the integral of the lowest den
spike and its approximate degree of localization to hold
both three and two dimensions and independently of
depth of the system. We have, however, not quantified
relationship, and present this remark simply to point out
intuitive reasonableness of our definition ofTc . Finally, note
that asT decreases, the WDA and LDA/Enskog density pr
files tend to disagree with increasing significance even in
nonoscillatory tails of the profiles~see Fig. 2 and especiall
Fig. 3!.

In Fig. 4, for several different sets ofm, g, D, we have
plotted the dimensionless critical temperaturetc[Tc /mgD
as a function of the initial layer thickness,m. The relation-

FIG. 3. As in Fig. 1 but withT,Tc . Note that the vertical range
of the graph clips the lowest two density peaks.
5-4
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ship turns out to be linear, as predicted in the LDA/Ensk
theory as well, and the numerically determined value fr
the slope for the constantm0 is m057.32 in three dimensions
~3D!. We have performed an analogous WDA calculation
2D using the Ree and Hoover correlation functionx(f), Eq.
~A1!, also for several different sets ofm, g, D. The data from
this calculation appear in Fig. 2 as well. They yieldm0
54.31 in 2D. It is important to note that alternate definitio
of Tc would lead to slightly different results than those
Fig. 2, but we believe that at the level of the approximatio
made in this work so far, our results are informative. Bo
the 2D and 3D WDA results are smaller than those obtai
by the LDA/Enskog approach, and we address this n

As we have discussed, in the LDA/Enskog approach,
value ofm0 depends onf0, the density at the bottom, and
identical to the functionf (f0). In all the approximations we
have used in this work,f (f0) @see Eqs.~A3!, ~A4!, ~A7!,
and ~A9!# is a function very sensitive tof0 for f0 near
close-packed values, i.e., forf0>1. Figure 5 illustrates this
sensitive dependence. Molecular dynamics simulations
two dimensions@10# have shown thatf0 at T,Tc varies
widely. For one set of simulations using 103 hard disks with
m520, defects in packing lead tof0 occupying the range
1.00,f0,1.14, with higher densities occurring at low
temperatures.~Note that for square packing in 2D,f051,
while for triangular packing,f052/A3'1.155.! In LDA/
Enskog theory, this range off0 leads to 21.76,m0,90.33
~the arrows in Fig. 5 indicate this range!, the large range due
to the sensitivity off (f0), while the WDA theory presented
here gives a smaller value,m054.31 for the 2D calculation
using the same equation of state. In the 3D LDA/Ensk
calculation using the Carnahan-Starling equation of st
one expects 15.299,m0,152.34 ~the lower bound for
simple cubic and the upper bound for hexagonal close pa
ing!, while the WDA yieldsm057.32. We see that even th
lowest possible values thatm0 may take in the LDA/Enskog
approach, namely, those for cubic or square packing~the
limit in which comparison to the WDA is most apt, given o
definition ofTc in that theory!, are indeed greater than thos
calculated in the WDA theory. Evidently, the LDA/Ensko

FIG. 4. Dimensionless condensation temperature,tc

[Tc /mgD, is plotted against the dimensionless layer thicknessm.
The slope is 1/m0. The upper line is for systems withd52, and the
lower line is for systems withd53. Different symbols along each
line correspond to different sets ofm, g, andD.
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theory simply predicts lower condensation temperatures t
the WDA theory, all other things being equal. To emphas
this difference, we present Fig. 6, which shows for a rep
sentative system both the LDA/Enskog and WDA profiles
Tc ~LDA !, the temperature at which the LDA/Enskog dens
profile takes the cubic packed density at the bottom (f0
51). The dots in Fig. 6 represent the average density of e
local maximum, measured between the nearest minima.
three bottom-most peaks have mean density in excess o
cubic close-packed value, and are highly localized. Clea
at this temperature, the WDA indicates the formation of
least three dense layers, while the LDA/Enskog theory p
dicts onset of condensation.

Finally, we turn our attention to the question of wheth
the condensation phenomenon we are considering is a p
transition in the thermodynamic sense, i.e., whether cond
sation corresponds to a discontinuity in the first or high
derivatives of the free energy with respect to temperatu

FIG. 5. Valuem0[ f (f0) as a function of density at the bottom
of the samplef0 as calculated in the LDA/Enskog theory. The sol
curve is for 2D using the Ree and Hoover value ofx(f), Eq. ~A3!.
The remaining curves are for 3D: dotted, Percus-Yevick compre
ibility form, Eq. ~A7!; dashed, Carnahan-Starling, Eq.~A4!; long
dashed, Percus-Yevick virial form, Eq.~A9!. The arrows on the 2D
curve indicate the range ofm0 calculated with the LDA/Enskog
theory from molecular dynamics simulation values off0.

FIG. 6. WDA ~solid line! and LDA/Enskog~dashed line! pro-
files for a representative system atTc ~LDA !. The dots are average
values of the WDA density peaks. At this temperature, the LD
Enskog theory indicates onset of condensation, while the W
theory indicates the formation of at least three dense layers.
5-5



n

s

r

be-

on-
n-
he
lt

the
rm

JOSEPH A. BOTH AND DANIEL C. HONG PHYSICAL REVIEW E64 061105
We address this question by focusing on the gravitatio
potential energy contribution to the free energy,Ug

5mg*0
`zr(z)dz, which is proportional to the center of mas

^z&5*0
`zr(z)dz/*0

`r(z)dz. First we show that in the LDA/
Enskog theory, which is extended to temperatures belowTc
by the assumption that the density in the frozen layers
given byf5fc and that the density above the frozen laye
is given by a vertically shifted LDA/Enskog profile@1#, a
kink in the center of mass develops atT5Tc , suggesting a
first order transition.

To do this we note that integration of Eq.~12!, taken with
our previous definitions, shows that the density profilef(z)
is given by the functional form

bz5 f ~f!2 f ~f0!, ~24!

wheref0 is the density atz50 andb5mgD/T. AboveTc ,

^z~T!&5

E
0

`

zf~z!dz

E
0

`

dzf~z!

[
1

b
I 1 /I 2 , ~25!

where

I 15E
f0(T)

0

@ f ~f!2 f ~f0!#f
d f

df
df

I 25E
f0(T)

0

f
d f

df
df.

Now, we note that forT nearTc ,

f0~T!'fc2a~T2Tc!, ~26!

wherea.0. Then for any integrandG(f) we can make the
following approximation:

E
f0(T)

0

G~f!df'E
fc

0

G~f!df2a~T2Tc!G~fc!.

~27!

Applying this to the above expression to the integralI 1 and
I 2, we find that̂ z(T)& is linear inT with a quadratic correc-
tion.

Below Tc , the density profile develops a kink atz5L.
For z,L, f(z)5fc the close-packed density, and forz
.L, the profile is given by the LDA/Enskog profile Eq.~24!,
and the thickness of the frozen layer is given by@1#

L5m~12T/Tc!. ~28!

We now compute the center of mass^z(T)&
06110
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^z~T!&5

E
0

`

zf~z!dz

E
0

`

f~z!dz

[

E
0

L

zfcdz1E
L

`

zf~z2L !dz

mfc

[
fcL

2/21I

mfc
, ~29!

where

I 5E
0

`

zf~z!dz1LE
0

`

f~z!dz[I 11LI 2

I 25fc~m2L !. ~30!

Hence,

I 5fcm
2

T

Tc
S 12

T

Tc
D1J,

where

J5E
0

`

zf~z!dz5E
fc

0

z~f!f
dz~f!

df
df[L/b2}T2

and where

L5E
0

fc
@ f ~fc!2 f ~f!#f

d f~f!

df
df.

It, therefore, follows that

^z~T!&5
m

2
1l1T2, ~31!

where

l15F 1

m S 1

mgDD 2S L

fc
2

m0
2

2 D G .
The center of mass scales with temperature quadratically
low Tc but linearly just aboveTc ; thus, there is a kink in the
center of mass and in the gravitational potential energy c
tribution to the free energy, giving rise to a first order tra
sition. The existence of kink in the potential energy at t
transition pointTc is in line with the recent rigorous resu
for one-dimensional hard rods@11#.

The scaling of̂ z& with T2 belowTc survives a modifica-
tion of how we represent the frozen region. Suppose,
density in the frozen region is not represented by a unifo
fc but is instead given by

f~z!5(
i

pid~z2z i !, ~32!

wherez i is the position of the center of hard spheres andpi
is its peak density in thei -th row forming a crystal. This is a
5-6
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crude way to approximate the oscillations in the density p
file due to the crystallization. Then,I 1 in Eq. ~30! is replaced
by

I 15E
0

L

zf~z!dz5(
i

z i pi . ~33!

If pi5fc for all i, then,

I 15fc(
i

z i5fc@1/213/215/21•••1~2L21!/2#

5fcL
2/2, ~34!

which is the same result as that obtained by assuming
density profile is approximated by a Fermi rectangle.

The WDA approach to the problem also yields results t
may be suggestive of the existence of a first order ph
transition. We allow that our method is approximate and t
our definition ofTc is open to question, and so a more ca
ful study of the transition in the WDA must be made
future. But it is nonetheless suggestive to examine the de
dence of the center of mass^z(T)& on T. Figure 7 shows
results for a representative system in 3D withm510 and
whose critical temperature was found to be on the ra
1.4mgD,Tc,1.5mgD. An elbow, possibly a kink, is ap
parent in the vicinity ofTc , marking the onset of near linea
behavior forT.Tc . We do not assert that this is evidence
a phase transition; we display this data merely to suggest
the existence of such a phase transition in the WDA
proach is not inconsistent with our data. A different form
the weight function in Eq.~15! might yield a better resul
regarding the nature of the phase transition.

IV. CONCLUSIONS

We have shown that the conclusion of the original pa
@1#, namely, that the scaling of the critical temperature
which hard spheres under gravity begin to form a solid
linear with their weight, their diameter, and the depth of t
sample, necessarily follows from the simplest dens
functional theory for the problem~the LDA! and survives a
richer density-functional treatment using a WDA. Pruden

FIG. 7. WDA calculation of center of mass^z& vs T/mgD for a
system withm510. The arrow indicatesTc and points to what may
be a kink in the function.
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requires us to note that our WDA for this problem did n
include any sophisticated attempt to represent the crys
fluid interface, something other researchers@12–14# working
on similar problems have done. Doing so should likely gi
a more accurate quantitative picture than that presented h
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APPENDIX

This appendix contains detailed results from the LD
Enskog theory. The particular form of the functionf (f0),
introduced in the local density approximation section, d
pends on the equation of state chosen to describe the sys
Reference@1# @Eq. ~15c! and Eq.~16c!# gives the functional
forms of f0 in 2D using the Ree and Hoover correlatio
function @15#;

x~f!5
~12a1f1a2f2!

~12af!2
, ~A1!

a50.489 351p/2,

a150.196 703p/2,

a250.006 519p2/4,

and in 3D using the Carnahan-Starling equation of state

P

rT
5

~11h1h22h3!

~12h!3
. ~A2!

The 2D Ree and Hoover form off (f0) is given by

f ~f0!RH5~11c2!f01
1

2
c1f0

21
c3f0

~12af0!

2
c4

a S 1

~12af0!
21D1

c4f0

~12af0!2
~A3!

with c15pa2 /a2'0.0855,c252(p/2)(a1 /a222a2 /a3)
'20.710, c352c2, andc45(p/2)(1/a2a1 /a21a2 /a3)
'1.278. The 3D Carnahan-Starling form off (f0) is given
by

f ~f0!CS5f02
2f0

~12af0!
1

2f0

~12af0!3
, ~A4!

where in this expressiona5p/6.
While the scaling of the critical temperature displayed

Eq. ~1! is independent of the particular equation of state u
in the calculation, the maximum value off (f0), which we
have defined above asm0, depends on the functional form o
the density profile, or equivalently, the pressure. Using
5-7
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two approximations above, and taking the maximum den
ties ashc5p/6A2'0.74 in 3D andhc5p/(2A3)'0.91 in
2D, we find

m0RH5111.31 ~2D!

m0CS5152.34 ~3D!. ~A5!

At the level of the Enskog approximation,m0 is quite sensi-
tive to the density at the bottom,f0.

In order to show the dependence ofm0 on approximation,
we also compute in it 3D by the Percus-Yevick compre
ibility form of the equation of state,

P

rT
5

11h1h2

~12h!3
, ~A6!

which yields equally high values form0,

f ~f0!PYC5
f0

~12af0!
23

f0

~12af0!2
13

f0

~12af0!3
,

~A7!

m0PYC5185.19.
9
/4

,

06110
i-

-

The slightly different form, namely, the virial form

P

rT
5

112h13h2

~12h!2
, ~A8!

yields

f ~f0!PYV53f028
f0

~12af0!
16

f0

~12af0!2

m0PYV586.63. ~A9!

We further point out that the breakdown of the sum rule
due to the fact that the pressure has a singularity ath51,
and thus it has afinite value at the close-packed densityhc ,
which is necessarily less than one@8#. If one uses the lattice
gas pressure@16#,

P52T ln~12r!, ~A10!

which has a singularity atr51, then the condensation tem
perature is zero, and the density profile is given by the Fe
function @17#

r~z!51/$11exp@mg~z2m!/T#%. ~A11!
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